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Total Synthesis of Pseudoguaianolides: 
(±)-Aromaticin and (±)-Aromatin 

Sir: 

We report herein the first total synthesis of aromaticin (1) 
and aromatin (2), isolated from the Chilean plant Helenium 

t-8u0 
0 t-BuO VCO2CH3 t-BuO 

aromaticum (Hook) Bailey,' which are members of the 
helenanolide group2 of pseudoguaianolides3 characterized by 
an a-oriented methyl group at C-IO.3 To prepare for this un-

t-Bu0 

a (a) LDA, (CH3)3SiCH2C02CH3J THF, -78 - 25 "C; (b) LDA-
HMPA, THF, -78 °C, then CH3CO2H; (c) 3H3-THF, -78 - 25 0C, 
H2O2, OH"; (d) Pt, O2, H20-acetone; (e) LDA-HMPA, BrCH3-
OCH3, -78 - -5 °C; (0 3 equiv of KO-f-Bu, 1 equiv of H3O, THF; 
(g) TFA, 0 0C, 3 h, then NaOH/j-PrOH-H30, 25 0C, 2 h; (h) PCC, 
CH2Cl2; (i) C6H5SeCl, EtAc, HCl, then NaIO4, THF-H2O, 25 0C, 7 h. 

dertaking, we had previously developed an expeditious route 
to properly functionalized bicyclo[5.3.0]decenone precursors,4 

in which the proper relative configurations at carbons 1, 5, and 
10 were subsequently established.5 These efforts afforded the 
key intermediate 3, whose transformation into (i)-aromaticin 
(and subsequently (±)-aromatin) is outlined in Scheme I. 

Our regio- and stereoselective lactone annelation com­
menced with carbanion attack at C-7 in 3 (methyl trimeth-
ylsilylacetate and LDA; quantitative yield). Once the acrylate 
side chain had been introduced, deconjugation toward C-8 was 
cleanly achieved by protonolysis of the kinetic dienolate re­
sulting from LDA-induced proton abstraction at the less hin­
dered 7 position (-»• 4). The stage was then set for the crucial 
hydroboration of 4,6 wherein two additional chiral centers can 
be correctly introduced if regiospecific attack by a borane 
occurs from the a face of the molecule, via a chair rather than 
twist-boat conformation. Complete hydroboration of the 
hindered double bond in 4, at the low temperatures chosen to 
ensure maximum stereoselectivity, could only be achieved with 
borane itself; this, in turn, left no choice but to allow un­
avoidable ester reduction7 to occur as well, affording diol 5, 
as a 4:1 stereoisomeric mixture, in 95% yield after oxidative 
workup. Purified 5,6 mp 114-115 0C, was selectively oxidized 
(Pt/02) to yield the required8 lactone 6,6 mp 88.5-89 0C, in 
45% overall yield (four steps) from 3: IR (neat) 1780, 1200 
cm"1; 'H NMR (CDCl3) 54.2 (C-8 H,brm), 3.4 (C-4 H,br 
m). 

a-Methylenation of 6 was achieved in two steps (Scheme 
I), surely one of the more direct approaches for solving this 
ubiquitous problem in natural products synthesis.10 After al­
ky lation" of 6 with methoxymethyl bromide, "unsolvated" 
potassium ferf-butoxide-potassium hydroxide in THF'2 was 
used to effect methanol elimination and saponification, so as 
to generate the acrylate anion which is presumably more 
protected from nucleophilic destruction than the corresponding 
acid or lactone. Quenching the basic solution in dilute acid 
afforded crude 76b [IR (neat) 1765, 1665 cm"1; 'H NMR 
(CDCl3) b6.00(1 H,d,y = 3 Hz), 5.26(1 H,d, J = 3 Hz)], 
which was directly subjected to deblocking and oxidation of 
the C-4 alcohol, according to Marshall.13 This afforded 2,3-
dihydroaromaticin(2,3-dihydro-l), mp 123-l24°C,in~20% 
overall yield from 6 (five steps). (+)-2,3-Dihydroaromaticin 
has recently been isolated from Telekia speciosau and we were 
pleased to find the 100-MHz 'H NMR spectrum and the mass 
spectrum (70 eV) of our synthetic material to be in excellent 
agreement with the detailed spectral data provided.'4 Insertion 
of the 2,3 double bond via selenylation and selenoxide elimi-
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Scheme IIa 

t-BuO 

"(a) excess CH3SO5Cl, (C2HS)3N, THF; aqueous NaOH; (b) Stiles 
reagent, then CH,0, (C2H5)2NH, CH3CO2H;21 (c) Scheme I, steps 
g-i. 

nation15 (in 75% crude yield) provided crystalline (±)-l, mp 
178-181 0C, which was identical in all respects except for 
optical rotation with authentic (+)-l, by TLC, 1H NMR, IR 
and MS.16 

Having rigorously characterized (±)-l, we returned to 6 and 
undertook regiospecific C-8 epimerization of the latter, to gain 
access to aromatin (2) as well (Scheme II). The dried potas­
sium salt of hydrolyzed 6 (KOH-CH3OH) was reacted with 
excess mesyl chloride and triethylamine in tetrahydrofuran 
(sulfene-generating conditions'7), so as to favor C-8 hydroxy I 
activation,™ necessary for inversion, at least competitively with 
carboxyl activation,19 which normally predominates during 
arenesulfonylation20 (and promotes lactonization with ste­
reochemical retention20). The crude mixed anhydride-C-8 
mesylate so produced was treated directly with aqueous sodium 
hydroxide, resulting in quantitative isolation of crude 8:6b IR 
(neat) 1780, 1200 cm -1 (~85% inversion, based on NMR 
integration of C-8 proton signals, at 5 4.8 in 8 and 4.2 in 6). The 
latter was treated with Stiles reagent, whereupon wwcarbox-
ylated residual 6 was removed by extraction, followed by 
Mannich alkylation-decarboxylation according to Parker and 
Johnson.21 The cis-fused methylenelactone 9613 [mp 95-97 0C; 
IR (neat) 1760, 1660 cm - 1], preparable in 50% yield from 6 
(three steps), was then converted into 2 using the same reac­
tions1315 employed in the 7 - • 1 transformation. During this 
series, crystalline 2,3-dihydroaromatin6b (2,3-dihydro-2) was 
obtained in high purity, mp 113-114 0C, and shown to be de­
void of 2,3-dihydro-l (by NMR). The yield of (±)-2, mp 
125-126 0C, was ~35% for five steps beginning with 9, and 
the 1H NMR spectrum was identical with that reported315 for 
(")-2. 

These accomplishments, with some steps yet to be refined, 
are cause for optimism in our continuing efforts to synthesize 
even more complex members of the fascinating pseudo-
guaianolide family and we shall report on these matters in due 
course. 
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X-ray Structural Analysis of 
H3[Rh4(bridge)8Cl][CoCl4]4-nH20. 
The Photoactive Species in the Production 
of Hydrogen from Aqueous Solutions 

Sir: 

The photochemical production of hydrogen gas from 
aqueous solutions has recently been an extremely active re­
search area. Several hydrogen producing systems have been 
designed and investigated by different workers.1 The central 
point in these investigations has been the determination of the 
mechanism for hydrogen formation from photogenerated 
precursors. As an aid to illucidating the mechanism of photo­
chemical hydrogen production in the Rh2(bridge)42+ (bridge 
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